Continental Heading into the Future of E-Mobility

Jörg Grotendorst
Hanover, December 15, 2011
We Shape the Megatrends in the Automotive Industry
Safety, Environment, Information, Affordable Cars
Powertrain ‘Clean Power’
Global Trends for Continental Powertrain

- Market: Limited Fuels, Increasing Traffic
- Legislation: Emission, Urbanization
- Social Trends: Growing Population
- Propulsion: Combustion, E-Mobility
- Complexity: From Component to System, Increasing Vehicle Applications

Powertrain Drivers

Powertrain ‘Clean Power’

Continental Heading into the Future of E-Mobility
Jörg Grotendorst (Strategy & Technology, Powertrain Division)
Legislation
Focus on CO₂ and Emission Reduction

Global vehicle requirements for CO₂ reduction
CO₂ fleet emission targets [g/km]; normalized to NEDC

* Interpolated from 2025 proposal

Continental Heading into the Future of E-Mobility
Jörg Grotendorst (Strategy & Technology, Powertrain Division)
Propulsion
Combustion Engines Dominant, Clear Trend towards Electrification

Source: Continental Automotive view based on Key Account Organisation, Powertrain Business Units and PS&T under consideration of external sources; Status May 2011
Challenges for E-Mobility Today

Focus on Technical and Economical Aspects

<table>
<thead>
<tr>
<th>Technical Challenges</th>
<th>Economical Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy storage</td>
<td>Cost</td>
</tr>
<tr>
<td>Driving range</td>
<td>Subsidy business for OEM</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Price</td>
</tr>
</tbody>
</table>

- **Battery costs** are expected to drop by almost 60% in the next 10 years.
- **Combustion engines** remain the most affordable solution for the next 20 years.
- **Alternative fuels** may replace fossil fuels to make internal combustion CO$_2$ neutral.

Dec. 15, 2011
Full Potential of Combustion Engine Still to Be Realized
Key Technologies for Reduction of CO2 Emissions in NEDC

Diesel engine
- Common Rail (CR) Diesel
- Diesel engine
- 1.4 t vehicle with 4-cyl. 1.6 l gasoline MPI naturally-aspirated (155 g CO$_2$/km = 100%)
- CO$_2$ emissions [%]

Naturally-aspirated gasoline engine
- MPI downsized
- + Thermal management
- + Two step valve lift
- + SDI / Cam phasing
- + Dual clutch transmission
- + Stop/Start
- + NOx Aftertreatment
- + Stop/Start
- + Hybrid electric drive
- + Hybrid electric drive

Reference: 1.4 t vehicle with 4-cyl. 1.6 l gasoline MPI naturally-aspirated (155 g CO$_2$/km = 100%)

© Continental Automotive GmbH Dec. 15, 2011
Safe, Efficient and Comfortable E-Mobility: Extensive Continental Portfolio (product selection)

- Global network of some 1,600 specialists
- 2009-2013 some 90 series projects at 17 manufacturers worldwide
- evSAT Sensor (Switching off of high-voltage battery in the event of an accident)

- Power electronic 2nd generation
- Separately excited synchronous motor
- Smart charging app (Charge level can be seen at all times in Smartphone)
- Electro-hydraulic brake MK C1
- Conti.eContact
- Lithium-ion battery
Outlook
Comprehensive Energy Management Thanks to System Integration

Today
Dedicated interfaces

Powertrain
Torque management
Aftertreatment

Chassis & Safety
Brakes
Driving dynamics

Interior
Information
Connectivity

Tomorrow
Overall system integration & optimization

Powertrain

Integrated Powertrain Management

Interior

Chassis & Safety

Combustion
E-mobility

Energy Management
Thank you for your attention!

Jörg Grotendorst
Hanover, December 15, 2011