Welcome to your CDP Water Security Questionnaire 2021

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

Continental AG is the parent company of the Continental Group. In addition to Continental AG, the Continental Group comprises 563 companies, including non-controlled companies. The Continental team is made up of 236,386 employees at a total of 561 locations in the areas of production, research and development, and administration, in 58 countries and markets. Added to this are the distribution locations, with 955 company-owned tire outlets and a total of around 5,000 franchises and operations with a Continental brand presence. The Continental Group is divided into the group sectors Automotive Technologies, Rubber Technologies and Powertrain Technologies. These sectors comprise five business areas with a total of 21 business units (as of January 1, 2021). A business area or business unit is classified according to product requirements, market trends, customer groups and distribution channels. The business areas and business units have overall responsibility for their business, including their results. The legally independent Powertrain business area operates under the name Vitesco Technologies. This has no effect on the financial reporting of the Powertrain business area within the Continental Group. Overall responsibility for managing the company is borne by the Executive Board of Continental Aktiengesellschaft (AG). Each business area is represented by one Executive Board member. To ensure a unified business strategy, an Automotive Board was established in the Automotive Technologies group sector, with the CEO of Continental AG serving as chairman. With the exception of Group Purchasing, the central functions of Continental AG are represented by the chairman of the Executive Board, the chief financial officer and the Executive Board member responsible for Human Relations. They take on the functions required to manage the Continental Group across business areas. These include, in particular, finance, controlling, compliance, law, IT, human relations, sustainability, as well as quality and environment.

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
</table>
Continental AG

CDP Water Security Questionnaire 2021

Wednesday, July 28, 2021

Reporting year	January 1, 2020	December 31, 2020

W0.3

(W0.3) Select the countries/areas for which you will be supplying data.

- Australia
- Belgium
- Brazil
- Canada
- Chile
- China
- Czechia
- Ecuador
- Finland
- France
- Germany
- Greece
- Hungary
- India
- Italy
- Japan
- Malaysia
- Mexico
- Morocco
- Philippines
- Poland
- Portugal
- Republic of Korea
- Romania
- Russian Federation
- Serbia
- Singapore
- Slovakia
- Slovenia
- South Africa
- Spain
- Sweden
- Thailand
- Turkey
- United Kingdom of Great Britain and Northern Ireland
- United States of America

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.
(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.
Companies, entities or groups over which operational control is exercised

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?
No

W1. Current state

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th></th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Important</td>
<td>Important</td>
<td>While freshwater is not used as an input factor in our products, supplies of freshwater are nevertheless important for both our direct and indirect production processes. In addition to the small quantities of high quality freshwater required for washing and drinking by employees, water resources are important in our direct production processes, particularly within the Tire Division, for cooling as well as for galvanic processes. Supplies of freshwater are also important in the production of many of our critical raw materials including especially natural rubber, various metals (i.e. steel), plastics and resins. Dependency on freshwater resources will become increasingly important for our indirect operations through the procurement of natural rubber in particular, where an initial footprinting assessment indicates most of our water exposure is held. This dependency is especially vulnerable in some dryer areas new to rubber cultivation where physical risks are of greatest concern.</td>
</tr>
</tbody>
</table>
Sufficient amounts of recycled, brackish and/or produced water available for use

<table>
<thead>
<tr>
<th></th>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – total volumes</td>
<td>76-99</td>
<td>All production sites and R&D sites apply a certified management system according to ISO 14001 and report their data in our global KPI tool. Data is collected on a monthly basis and aggregated for annual reporting</td>
</tr>
<tr>
<td>Water withdrawals – volumes by source</td>
<td>76-99</td>
<td>All production sites and R&D sites apply a certified management system according to ISO 14001 and report their data in our global KPI tool. Data is collected on a monthly basis and aggregated for annual reporting.</td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>76-99</td>
<td>All production sites and R&D sites apply a certified management system according to ISO 14001 and report their data in our global KPI tool. Data is collected on a monthly basis and aggregated for annual reporting.</td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>76-99</td>
<td>All production sites and R&D sites apply a certified management system according to ISO 14001 and report their data in our global KPI tool.</td>
</tr>
</tbody>
</table>

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

Currently we do not depend in any significant way on brackish or recycled water for our direct operations, where use of such sources is nearly zero except in a few isolated plants for cooling purposes. An initial assessment of our supply chain also indicates that such water sources are of lesser importance as compared to freshwater, and where it is used it is primarily for cooling and steam production in the processing of raw materials. An assessment of our indirect water footprint indicates that most of our water exposure lies in key raw materials such as natural rubber that rely primarily on freshwater, and we do not anticipate that this will change in the near future. However, we do expect to expand our use of recycled water within our direct operations in select locations, particularly those facing acute water stress.
<table>
<thead>
<tr>
<th>Category</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water discharges – volumes by destination</td>
<td>76-99</td>
<td>The KPI is monitored locally on an as-needed basis for sites where additional monitoring parameters are required for legal reasons, and are not aggregated at Corporate level. Usually this indicator is monitored on a monthly basis, although slight variations in monitoring frequency may occur in some locations where legal requirements differ.</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>51-75</td>
<td>The KPI is monitored locally on an as-needed basis for sites where additional monitoring parameters are required for legal reasons, and are not aggregated at Corporate level. Usually this indicator is monitored on a monthly basis, although slight variations in monitoring frequency may occur in some locations where legal requirements differ.</td>
</tr>
<tr>
<td>Water discharge quality – by standard effluent parameters</td>
<td>51-75</td>
<td>The KPI is monitored locally on an as-needed basis for sites where additional monitoring parameters are required for legal reasons, and are not aggregated at Corporate level. Usually this indicator is monitored on a monthly basis, although slight variations in monitoring frequency may occur in some locations where legal requirements differ.</td>
</tr>
<tr>
<td>Water discharge quality – temperature</td>
<td>51-75</td>
<td>The KPI is monitored locally on an as-needed basis for sites where additional monitoring parameters are required for legal reasons, and are not aggregated at Corporate level. Usually this indicator is monitored on a monthly basis, although slight variations in monitoring frequency may occur in some locations where legal requirements differ.</td>
</tr>
<tr>
<td>Water consumption – total volume</td>
<td>76-99</td>
<td>All production sites and R&D sites apply a certified management system according to ISO 14001 and report their data in our global KPI tool. Data is collected on a monthly basis and aggregated for annual reporting.</td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>26-50</td>
<td>Monitoring of recycled/reused water is only undertaken within our Business Area Tire and is conducted on a monthly basis.</td>
</tr>
<tr>
<td>The provision of fully-functioning, safely</td>
<td>100%</td>
<td>In all plants operated by Continental, WASH Services are provided to our workers as per our company policy. An internal audit of our</td>
</tr>
</tbody>
</table>
W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th></th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>17,296,431</td>
<td>Lower</td>
<td>In 2020 the total water demand amounted to 17.3 million m³ (PY: 19.5 million m³). This mainly includes drinking water from public water suppliers, as well as the withdrawal of groundwater and surface water. Water demand fell by 11.3% year-on-year. This was due in particular to the decline in production due to the COVID-19 pandemic, as well as the water-saving projects introduced. In the future, withdrawal volumes are expected to remain roughly stable on a pre-pandemic level with a slight decrease possible due to internal efficiency measures.</td>
</tr>
<tr>
<td>Total discharges</td>
<td>9,099,074</td>
<td>Lower</td>
<td>A slightly lower discharge figure resulted from the decline in production due to the COVID-19 pandemic, as well as the water-saving projects introduced. In the future, volumes are expected to remain roughly stable on a pre-pandemic level with a slight decrease possible due to further internal efficiency measures requiring fewer withdrawals and an uptake in the use of recycled water in some locations.</td>
</tr>
<tr>
<td>Total consumption</td>
<td>8,197,357</td>
<td>Lower</td>
<td>Production decline due to the COVID-19 pandemic along with a reduction in water withdrawal resulted in a lower consumption figure compared with the previous year. In the future, volumes are expected to remain roughly stable on a pre-pandemic level with a slight decrease possible due to internal efficiency measures.</td>
</tr>
</tbody>
</table>
W1.2d

(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Withdrawals are from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>11-25</td>
<td>Lower</td>
<td>WRI Aqueduct</td>
<td>2018 was the first year in which we assessed and classified our production sites based on various indicators covering physical risks, quality risks as well as reputational and regulatory risks as part of a global water risk assessment. The WRI Aqueduct tool was selected to assess water stress for all basins within which we have production facilities. The assessment was carried out for the indicator baseline water stress (BWS) using data from the model’s baseline year (2010) as well as for future projections of water stress in 2020, 2030 and 2040. Based on the outcome of this assessment, we determined that total production facility withdrawals from basins designated as suffering from extreme water stress constituted 15% of the total. Priority countries include Mexico, India, South Africa and China. The full update of the water risk assessment was conducted in 2021. Similar to the overall water withdrawal, the water withdrawal from areas with water stress declined due to the</td>
<td></td>
</tr>
</tbody>
</table>
COVID-19 pandemic and was lower than in 2019.

W1.2h

W1.2h (W1.2h) Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Source</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>3,277,249</td>
<td>Lower</td>
<td>Decline in production due to the COVID-19 pandemic and several technical measures in production led to effective water savings for our surface and renewable groundwater sources compared with the previous year's figure. In the future, withdrawal volumes are expected to remain roughly stable on a pre-pandemic level with a slight decrease possible due to internal efficiency measures. Water withdrawal from this source is relevant because it is needed for certain processes within our operations.</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Not relevant</td>
<td></td>
<td></td>
<td>Water from this source is not used by our organisation as supplies from other sources are sufficient to meet our production needs. We do not expect any withdrawals from this source in the future.</td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>5,756,257</td>
<td>Lower</td>
<td>Decline in production due to the COVID-19 pandemic and several technical measures in production led to effective water savings for our surface and renewable groundwater sources</td>
</tr>
</tbody>
</table>
compared with the previous year's figure. In the future, withdrawal volumes are expected to remain roughly stable on a pre-pandemic level with a slight decrease possible due to internal efficiency measures. Water withdrawal from this source is relevant because it is needed for certain processes within our operations.

<table>
<thead>
<tr>
<th>Groundwater – non-renewable</th>
<th>Not relevant</th>
<th>Water from this source is not used by our organisation as supplies from other sources are sufficient to meet our production needs. We do not expect any withdrawals from this source in the future.</th>
</tr>
</thead>
</table>

Produced/Entrained water

Relevant

321,383

About the same

Water from this source is used by our organization to support supplies from other sources sufficiently to meet our production needs. Water withdrawal from this source is relevant because it is needed for certain processes within our operations.

Third party sources

Relevant

7,941,542

Lower

Decline in production due to the COVID-19 pandemic and several technical measures in production led to effective water savings. Water withdrawal from this source is relevant because it is needed for certain processes within our operations.

W1.2i

(W1.2i) Provide total water discharge data by destination.
<table>
<thead>
<tr>
<th>Category</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant but volume unknown</td>
<td></td>
<td></td>
<td>Although we have limited discharge to fresh surface water sources for select sites, this operation takes place on an as-needed basis and is not common practice across the company as a whole. Therefore, monitored data on such discharge are not aggregated at the corporate level.</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Not relevant</td>
<td></td>
<td></td>
<td>We do not use water from not discharge water to brackish surface water or seawater sources.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Relevant but volume unknown</td>
<td></td>
<td></td>
<td>Although we have limited discharge to groundwater sources for select sites, this operation takes place on an as-needed basis and is not common practice across the company as a whole. Therefore, monitored data on such discharge are not aggregated at the corporate level.</td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Relevant</td>
<td>9,099,074</td>
<td>Lower</td>
<td>A lower discharge figure resulted from the decline in production due to the COVID-19 pandemic, as well as the water-saving projects introduced and other efficiency measures. It is corporate policy to discharge all wastewater to third-party destinations and therefore this indicator represents the vast majority of water discharged across the company as a whole. In the future, discharge volumes are expected to remain roughly stable on a pre-pandemic level with a slight decrease possible</td>
</tr>
</tbody>
</table>
due to further internal efficiency measures requiring fewer withdrawals and an uptake in the use of recycled water in some locations.

W1.2j

(W1.2j) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Treatment Level</th>
<th>Relevance of treatment level to discharge</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment</td>
<td>Relevant but volume unknown</td>
<td>Aggregated numbers are not available on Group Level but locations meter the discharged volumes</td>
</tr>
<tr>
<td>Secondary treatment</td>
<td>Relevant but volume unknown</td>
<td>Aggregated numbers are not available on Group Level but locations meter the discharged volumes</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Relevant but volume unknown</td>
<td>Aggregated numbers are not available on Group Level but locations meter the discharged volumes</td>
</tr>
<tr>
<td>Discharge to the natural environment without treatment</td>
<td>Not relevant</td>
<td></td>
</tr>
<tr>
<td>Discharge to a third party without treatment</td>
<td>Relevant but volume unknown</td>
<td>Aggregated numbers are not available on Group Level but locations meter the discharged volumes</td>
</tr>
<tr>
<td>Other</td>
<td>Not relevant</td>
<td></td>
</tr>
</tbody>
</table>

W1.4

(W1.4) Do you engage with your value chain on water-related issues?

Yes, our suppliers

W1.4a

(W1.4a) What proportion of suppliers do you request to report on their water use, risks and/or management information and what proportion of your procurement spend does this represent?

Row 1

% of suppliers by number
51-75

% of total procurement spend
26-50

Rationale for this coverage
Continental uses EcoVadis software to obtain information from suppliers and prioritizes those for water disclosure based on strategic materiality and environmental impact thresholds built into the software. All strategic suppliers meeting these criteria are included in the assessment. Suppliers are required to report environmental data indicators among others as a pre-condition for doing business with Continental and the terms are detailed in our supplier agreement. Continental does not actively incentivize suppliers to report their data.

Impact of the engagement and measures of success
All suppliers are required to provide information on the total product and/or raw material acquired by Continental on an annual basis with high water-impact products being flagged should further investigation be required. For the more targeted set of suppliers mentioned above, basic metrics with respect to water withdrawals and discharge are also requested. This information is used internally to assess sourcing and financial risks as well as to indicate hotspots for water and other environmental impacts.

Comment

W1.4b

(W1.4b) Provide details of any other water-related supplier engagement activity.

Type of engagement
Innovation & collaboration

Details of engagement
Educate suppliers about water stewardship and collaboration

% of suppliers by number
Less than 1%

% of total procurement spend
Less than 1%

Rationale for the coverage of your engagement
In a collaboration project with Tier 1 suppliers within the Bravo River Basin in Mexico, we have created a network within the regional production economy to promote resource efficiency and in particular water-use efficiency, which was one of the more important KPIs discussed as part of the engagement. The location of these suppliers within a
designated high-risk water stressed basin was one of the primary motivations for selecting these suppliers in particular.

Impact of the engagement and measures of success

Measures to promote and monitor water-use efficiency across the network of suppliers were implemented with the aim of spreading awareness about the water topic and monitoring know-how throughout the group. Progress is assessed in terms of changes in water withdrawals at the site levels per unit of production, with initial results indicating that some reductions in water withdrawals per unit of production were achieved in addition to reduced total water input costs.

Comment

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?
No

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?
Yes, fines

W2.2a

(W2.2a) Provide the total number and financial value of all water-related fines.

Row 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of fines</td>
<td>4</td>
</tr>
<tr>
<td>Total value of fines</td>
<td>26,139</td>
</tr>
<tr>
<td>% of total facilities/operations associated</td>
<td>1</td>
</tr>
<tr>
<td>Number of fines compared to previous reporting year</td>
<td>About the same</td>
</tr>
</tbody>
</table>

Comment
W2.2b

(W2.2b) Provide details for all significant fines, enforcement orders and/or other penalties for water-related regulatory violations in the reporting year, and your plans for resolving them.

<table>
<thead>
<tr>
<th>Type of penalty</th>
<th>Financial impact</th>
<th>Country/Area & River basin</th>
<th>Type of incident</th>
<th>Description of penalty, incident, regulatory violation, significance, and resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine</td>
<td>14,481</td>
<td>Russian Federation</td>
<td>Effluent limit exceedances</td>
<td>Fines were issued due to exceeding the limit values for wastewater discharge into the public sewage system.</td>
</tr>
</tbody>
</table>

W3. Procedures

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?

Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Direct operations

<table>
<thead>
<tr>
<th>Coverage</th>
<th>Risk assessment procedure</th>
<th>Frequency of assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>Water risks are assessed as a standalone issue</td>
<td>Every two years</td>
</tr>
</tbody>
</table>
How far into the future are risks considered?
3 to 6 years

Type of tools and methods used
Tools on the market

Tools and methods used
Water Footprint Network Assessment tool
WRI Aqueduct
WWF Water Risk Filter

Comment

Supply chain

Coverage
Partial

Risk assessment procedure
Water risks are assessed as a standalone issue

Frequency of assessment
Every two years

How far into the future are risks considered?
3 to 6 years

Type of tools and methods used
Tools on the market

Tools and methods used
Water Footprint Network Assessment tool
WRI Aqueduct
WWF Water Risk Filter

Comment

Other stages of the value chain

Coverage
None

Comment

W3.3b

(W3.3b) Which of the following contextual issues are considered in your organization’s water-related risk assessments?
<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Water quality at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Stakeholder conflicts concerning water resources at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Implications of water on your key commodities/raw materials</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Water-related regulatory frameworks</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Status of ecosystems and habitats</td>
<td>Relevant, always included</td>
</tr>
</tbody>
</table>
Access to fully-functioning, safely managed WASH services for all employees | Relevant, always included | The provision of WASH services to all Continental employees is corporate policy and the WASH facilities are audited using internal methods on an annual basis at production facilities to ensure compliance with this and other health and safety policies.

Other contextual issues, please specify

W3.3c

(W3.3c) Which of the following stakeholders are considered in your organization’s water-related risk assessments?

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Not considered</td>
<td>Our current risk assessment focuses exclusively on our direct and indirect operations and does not consider possible water risks relating to our customers.</td>
</tr>
<tr>
<td>Employees</td>
<td>Relevant, always included</td>
<td>Safe, clean drinking water and adequate sanitation facilities are important for employees to operate effectively and maintain a healthy working environment. Therefore WASH services are provided to all Continental employees and verified periodically as part of our internal health and safety audits.</td>
</tr>
<tr>
<td>Investors</td>
<td>Not considered</td>
<td>Our current risk assessment focuses exclusively on our direct and indirect operations and does not consider possible water risks relating to our investors.</td>
</tr>
<tr>
<td>Local communities</td>
<td>Relevant, always included</td>
<td>We collect information from and coordinate our operations with local NGOs and community groups in order to mitigate possible negative impacts of our production and promote positive community relations. To date these risks and responses have been conducted on a site by site basis, however following our recent universal risk assessments we shall likely prioritize engagement based on the risk to the local basin through community water projects, for example.</td>
</tr>
<tr>
<td>NGOs</td>
<td>Relevant, always included</td>
<td>We collect information from and coordinate our operations with local NGOs and community groups in order to mitigate possible negative impacts of our production and promote positive community relations. These risks and responses are conducted on a site by site basis.</td>
</tr>
<tr>
<td>Other water users at a basin/catchment level</td>
<td>Relevant, not included</td>
<td>Our current risk assessment focuses exclusively on our direct and indirect operations and does not yet consider possible water risks relating to other water users in the basin. As we consider changes to our water policy in at-risk water basins</td>
</tr>
</tbody>
</table>
within the next 2-3 years, however, we intend to include other water users where collaboration is necessary.

<table>
<thead>
<tr>
<th>Regulators</th>
<th>Relevant, always included</th>
<th>We collect information from and coordinate our operations with local regulatory authorities in order to ensure compliance with local regulations. These risks and responses are conducted on a site by site basis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>River basin management authorities</td>
<td>Relevant, always included</td>
<td>We collect information on a site by site and country by country basis explore measures that will mitigate impact to operations.</td>
</tr>
<tr>
<td>Statutory special interest groups at a local level</td>
<td>Relevant, not included</td>
<td>Our current risk assessment focuses exclusively on our direct and indirect operations and does not yet consider possible water risks relating to special interest groups at the local level within these basins. As we consider changes to our water policy in at-risk water basins within the next 2-3 years, however, we intend to include local special interest groups where collaboration is necessary.</td>
</tr>
<tr>
<td>Suppliers</td>
<td>Relevant, always included</td>
<td>Implications of water risk (quantity and quality) are evaluated using the WRI Aqueduct Tool, WWF Water Risk Filter and Water Footprint Assessment Tool, with different tools used depending on the indicator under consideration and designation required. Suppliers located in basins exhibiting high levels of water stress are flagged, and initial engagement with suppliers on promoting water-efficiency internally has been piloted in some key basins (e.g. Mexico).</td>
</tr>
<tr>
<td>Water utilities at a local level</td>
<td>Not considered</td>
<td>Our current risk assessment focuses exclusively on our direct and indirect operations and does not consider possible water risks relating to local water utilities.</td>
</tr>
<tr>
<td>Other stakeholder, please specify</td>
<td>Not considered</td>
<td></td>
</tr>
</tbody>
</table>

W3.3d

(W3.3d) Describe your organization’s process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

We applied a variety of water risk assessment tools for the first time in 2018 in order to conduct an initial global assessment of our water risk profile using a wide range of indicators. This assessment was again updated in 2019. This involved using the WRI Aqueduct Tool and WWF Water Risk Filter to screen our global direct operations and Tier 1 suppliers for current and projected water quantity, water quality, regulatory and reputational risks. In addition, we used the Water Footprint Network’s Water Footprint Assessment Tool to help support the quantification of water impacts for key raw materials within our supply chain. These tools were selected due to the wide range of indicators used as well as their general uptake among competitors within our industry in order to ensure consistency in the results. We intend to re-
evaluate these indicators every two years in order to take advantage of any updates to the publicly available datasets and ensure accurate risk profiles for strategy planning purposes. The full update of the water risk assessment was conducted in 2021.

The initial analysis allowed us to determine which production sites and suppliers can be considered at risk from a water quantity or quality perspective. More specifically, we were able to identify basins designated as exhibiting "Extremely High Risk" of baseline water stress, which will be flagged for special attention in the future. The scope of this special attention depends on changes made to our current water policy and remains under discussion.

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

We consider substantive financial or strategic impact to our business to be defined as the highest level of baseline water stress as defined by our global WRI Aqueduct risk analysis (Level 5 - Extremely High Risk), which is a quantitative risk metric indicating the ratio of total annual water withdrawals to total annual renewable water supply within a defined basin. The highest risk level indicates that 80% or more of total water available is being withdrawn for human purposes. We do not currently recognize direct or indirect operational sites located in basins below the 80% threshold as subject to substantive risk, however we may modify this definition in the future to include more sites.

Based on our most recent Aqueduct analysis, six facilities within our direct operations fall within our high risk threshold while one of our priority suppliers (indirect operations) can be categorized as high risk according to our definition.

As a result of this analysis, many of our production sites located in Mexico have been targeted for special water-efficiency measures and engagement with the water topic due to the large number of facilities located within high-risk basins.
W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>6</td>
<td>1-25</td>
</tr>
</tbody>
</table>

W4.1c

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

Country/Area & River basin

Mexico

Bravo

Number of facilities exposed to water risk

1

% company-wide facilities this represents

Less than 1%

% company's total global revenue that could be affected

Less than 1%

Comment

Country/Area & River basin

Mexico

Colorado River (Pacific Ocean)

Number of facilities exposed to water risk

1

% company-wide facilities this represents

Less than 1%
% company’s total global revenue that could be affected
Less than 1%

Comment

Country/Area & River basin
India
Ganges - Brahmaputra

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

% company’s total global revenue that could be affected
Less than 1%

Comment

Country/Area & River basin
South Africa
Other, please specify
Algoa

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

% company’s total global revenue that could be affected
Less than 1%

Comment

Country/Area & River basin
China
Yongding He

Number of facilities exposed to water risk
1
% company-wide facilities this represents
Less than 1%

% company’s total global revenue that could be affected
Less than 1%

Comment

Country/Area & River basin
China
Huang He (Yellow River)

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

% company’s total global revenue that could be affected
Less than 1%

Comment

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin
Merica
Bravo

Type of risk & Primary risk driver
Physical
Increased water stress

Primary potential impact
Constraint to growth

Company-specific description
This basin was designated as extremely high risk in terms of baseline water stress in accordance with the global WRI Aqueduct water risk assessment described above and therefore flagged for our attention. A lack of available freshwater could be a limiting
factor in our productive capacity, particularly in light of our expected growth forecasts in this expanding domestic market and therefore further investigation will be necessary to determine the appropriate engagement/response from a water perspective.

Timeframe
1-3 years

Magnitude of potential impact
Medium-low

Likelihood
Likely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)
1

Potential financial impact figure - maximum (currency)
10,000,000

Explanation of financial impact
5,000,000 = average of estimated range of impact (1 - 10,000,000). The calculation of direct financial impact is in the beginning phases only and obtaining precise figures remains difficult at this stage. We have identified an early estimated figure regarding financial impact and have initiated countermeasures to address this impact, however the precise figures remain confidential at present.

Primary response to risk
Adopt water efficiency, water reuse, recycling and conservation practices

Description of response
ESH Managers and Facilities generally are trained in water-use efficiency and technical solutions to save water.

Cost of response
1

Explanation of cost of response
All individual measures are calculated at the individual site level and at present are not aggregated at the corporate level.
1 = Figures for cost of response are considered confidential

Country/Area & River basin
Mexico
Colorado River (Pacific Ocean)

Type of risk & Primary risk driver
- Physical
 - Increased water stress

Primary potential impact
- Constraint to growth

Company-specific description
This basin was designated as extremely high risk in terms of baseline water stress in accordance with the global WRI Aqueduct water risk assessment described above and therefore flagged for our attention. A lack of available freshwater could be a limiting factor in our productive capacity, particularly in light of our expected growth forecasts in this expanding domestic market and therefore further investigation will be necessary to determine the appropriate engagement/response from a water perspective.

Timeframe
- 1-3 years

Magnitude of potential impact
- Medium-low

Likelihood
- Likely

Are you able to provide a potential financial impact figure?
- Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)
- 1

Potential financial impact figure - maximum (currency)
- 10,000,000

Explanation of financial impact

5,000,000 = average of estimated range of impact (1 - 10,000,000). The calculation of direct financial impact is in the beginning phases only and obtaining precise figures remains difficult at this stage. We have identified an early estimated figure regarding financial impact and have initiated countermeasures to address this impact, however the precise figures remain confidential at present.

Primary response to risk
- Adopt water efficiency, water reuse, recycling and conservation practices

Description of response
ESH Managers and Facilities generally are trained in water-use efficiency and technical solutions to save water.

Cost of response
1

Explanation of cost of response
All individual measures are calculated at the individual site level and at present are not aggregated at the corporate level.
1 = Figures for cost of response are considered confidential

Country/Area & River basin
- India
- Ganges - Brahmaputra

Type of risk & Primary risk driver
- Physical
- Increased water stress

Primary potential impact
- Constraint to growth

Company-specific description
This basin was designated as extremely high risk in terms of baseline water stress in accordance with the global WRI Aqueduct water risk assessment described above and therefore flagged for our attention. A lack of available freshwater could be a limiting factor in our productive capacity, particularly in light of our expected growth forecasts in this expanding domestic market and therefore further investigation will be necessary to determine the appropriate engagement/response from a water perspective.

Timeframe
1-3 years

Magnitude of potential impact
- Medium

Likelihood
- Likely

Are you able to provide a potential financial impact figure?
- Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)
1

Potential financial impact figure - maximum (currency)
10,000,000

Explanation of financial impact
5,000,000 = average of estimated range of impact (1 - 10,000,000). The calculation of direct financial impact is in the beginning phases only and obtaining precise figures remains difficult at this stage. We have identified an early estimated figure regarding financial impact and have initiated countermeasures to address this impact, however the precise figures remain confidential at present.

Primary response to risk
Adopt water efficiency, water reuse, recycling and conservation practices

Description of response
ESH Managers and Facilities generally are trained in water-use efficiency and technical solutions to save water.

Cost of response
1

Explanation of cost of response
All individual measures are calculated at the individual site level and at present are not aggregated at the corporate level.
1 = Figures for cost of response are considered confidential

Country/Area & River basin
South Africa
Other, please specify
Algoa

Type of risk & Primary risk driver
Physical
Increased water stress

Primary potential impact
Constraint to growth

Company-specific description
This basin was designated as extremely high risk in terms of baseline water stress in accordance with the global WRI Aqueduct water risk assessment described above and therefore flagged for our attention. A lack of available freshwater could be a limiting factor in our productive capacity, particularly with respect to the production of steam, which specifically relevant to this facility and could lead to higher production costs.

Timeframe
1-3 years

Magnitude of potential impact
Medium
Likelihood

Likely

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

1

Potential financial impact figure - maximum (currency)

10,000,000

Explanation of financial impact

5,000,000 = average of estimated range of impact (1 - 10,000,000). The calculation of direct financial impact is in the beginning phases only and obtaining precise figures remains difficult at this stage. We have identified an early estimated figure regarding financial impact and have initiated countermeasures to address this impact, however the precise figures remain confidential at present.

Primary response to risk

Adopt water efficiency, water reuse, recycling and conservation practices

Description of response

ESH Managers and Facilities generally are trained in water-use efficiency and technical solutions to save water.

Cost of response

1

Explanation of cost of response

All individual measures are calculated at the individual site level and at present are not aggregated at the corporate level.

1 = Figures for cost of response are considered confidential

Country/Area & River basin

China

Yongding He

Type of risk & Primary risk driver

Physical

Increased water stress

Primary potential impact

Constraint to growth

Company-specific description
This basin was designated as extremely high risk in terms of baseline water stress in accordance with the global WRI Aqueduct water risk assessment described above and therefore flagged for our attention. A lack of available freshwater could be a limiting factor in our productive capacity, particularly in light of our expected growth forecasts in this expanding domestic market and therefore further investigation will be necessary to determine the appropriate engagement/response from a water perspective.

Timeframe
1-3 years

Magnitude of potential impact
Medium

Likelihood
Likely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

- **Potential financial impact figure - minimum (currency)**
 1

- **Potential financial impact figure - maximum (currency)**
 10,000,000

Explanation of financial impact
5,000,000 = average of estimated range of impact (1 - 10,000,000). The calculation of direct financial impact is in the beginning phases only and obtaining precise figures remains difficult at this stage. We have identified an early estimated figure regarding financial impact and have initiated countermeasures to address this impact, however the precise figures remain confidential at present.

Primary response to risk
Adopt water efficiency, water reuse, recycling and conservation practices

Description of response
ESH Managers and Facilities generally are trained in water-use efficiency and technical solutions to save water.

Cost of response
1

Explanation of cost of response
All individual measures are calculated at the individual site level and at present are not aggregated at the corporate level.
1 = Figures for cost of response are considered confidential
Country/Area & River basin
- China
- Huang He (Yellow River)

Type of risk & Primary risk driver
- Physical
- Increased water stress

Primary potential impact
- Constraint to growth

Company-specific description
This basin was designated as extremely high risk in terms of baseline water stress in accordance with the global WRI Aqueduct water risk assessment described above and therefore flagged for our attention. A lack of available freshwater could be a limiting factor in our productive capacity, particularly in light of our expected growth forecasts in this expanding domestic market and therefore further investigation will be necessary to determine the appropriate engagement/response from a water perspective.

Timeframe
- 1-3 years

Magnitude of potential impact
- Medium

Likelihood
- Likely

Are you able to provide a potential financial impact figure?
- Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)
- 1

Potential financial impact figure - maximum (currency)
- 10,000,000

Explanation of financial impact
5,000,000 = average of estimated range of impact (1 - 10,000,000). The calculation of direct financial impact is in the beginning phases only and obtaining precise figures remains difficult at this stage. We have identified an early estimated figure regarding financial impact and have initiated countermeasures to address this impact, however the precise figures remain confidential at present.

Primary response to risk
Adopt water efficiency, water reuse, recycling and conservation practices

Description of response
ESH Managers and Facilities generally are trained in water-use efficiency and technical solutions to save water.

Cost of response
1

Explanation of cost of response
All individual measures are calculated at the individual site level and at present are not aggregated at the corporate level.
1 = Figures for cost of response are considered confidential

W4.2a

(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin
China
Yangtze River (Chang Jiang)

Stage of value chain
Supply chain

Type of risk & Primary risk driver
Physical
Increased water stress

Primary potential impact
Disruption to sales due to value chain disruption

Company-specific description
This basin in which one of our Chinese suppliers is located was designated as extremely high risk in terms of baseline water stress in accordance with the global WRI Aqueduct water risk assessment described above and therefore flagged for our attention. A lack of available freshwater could impact our procurement of necessary raw materials and input components required by our production facilities and therefore further investigation will be necessary to determine the appropriate engagement/response with such suppliers from a water perspective.

Timeframe
1-3 years

Magnitude of potential impact
Medium
Likelihood

Likely

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

1

Potential financial impact figure - maximum (currency)

10,000,000

Explanation of financial impact

5,000,000 = average of estimated range of impact (1 - 10,000,000). The calculation of direct financial impact is in the beginning phases only and obtaining precise figures remains difficult at this stage. We have identified an early estimated figure regarding financial impact and have initiated countermeasures to address this impact, however the precise figures remain confidential at present.

Primary response to risk

Upstream

Map supplier water risk

Description of response

The designation of suppliers from this basin as belonging to the extremely high-risk category was determined based on an initial global water risk assessment and therefore further refinement of the risk assessment and engagement with affected suppliers will be necessary to determine an appropriate and targeted response to lessen risk from water stress.

Cost of response

1

Explanation of cost of response

Further refinements to the risk assessment using additional indicators shall be conducted using WRI Aqueduct Tool and WWF Water Risk Filter to take into account issues regarding water quality, flooding, rainfall variability and other factors to narrow down the scope of the risk to suppliers within this basin. Subsequent high-level engagement with the supplier shall initiate a deeper assessment based on local knowledge to determine an initial course of action. Such due diligence and risk mitigation planning is not considered to have significant costs at the pre-implementation phase.

1 = Figures for cost of response are considered confidential
W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?

No

W4.3b

(W4.3b) Why does your organization not consider itself to have water-related opportunities?

<table>
<thead>
<tr>
<th>Primary reason</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunities exist, but none with potential to have a substantive financial or strategic impact on business</td>
<td>In some areas of ContiTech business area we provide solutions to save water or to reduce water losses by evaporation. However, this is not a major portion of or business or production costs. Opportunities are regularly elaborated and assessed in our Environmental and in our Engineering departments on Business Area and on location level. If opportunities (e.g. increased water efficiency or water savings) are exceeding the internal threshold of 1* and can be realized (technically) on location level, measures might be implemented. The assessments are done regularly but at least yearly.</td>
</tr>
<tr>
<td>Row 1</td>
<td>*1 = Figures for threshold of substantive opportunities are considered confidential</td>
</tr>
</tbody>
</table>

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Facility reference number

Facility 1

Facility name (optional)

Country/Area & River basin

Mexico

Bravo

Latitude

31.7
Longitude
106.4

Located in area with water stress
Yes

Total water withdrawals at this facility (megaliters/year)
24,314

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
24,314

Total water discharges at this facility (megaliters/year)
12,158

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
12,158

Total water consumption at this facility (megaliters/year)
12,156
Comparison of total consumption with previous reporting year
Lower

Please explain
Besides the implementation of water-use efficiency measures at this facility, a decrease in production due to the COVID-19 pandemic resulted in a decrease in the level of water withdrawals, discharge and consumption compared to the previous reporting year.

Facility reference number
Facility 2

Facility name (optional)

Country/Area & River basin
Mexico
Colorado River (Pacific Ocean)

Latitude
31.3

Longitude
110.9

Located in area with water stress
Yes

Total water withdrawals at this facility (megaliters/year)
31,366

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0
Withdrawals from third party sources
31,366

Total water discharges at this facility (megaliters/year)
9,411

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
9,411

Total water consumption at this facility (megaliters/year)
21,955

Comparison of total consumption with previous reporting year
Lower

Please explain
Besides the implementation of water-use efficiency measures at this facility, a decrease in production due to the COVID-19 pandemic resulted in a decrease in the level of water withdrawals, discharge and consumption compared to the previous reporting year.

Facility reference number
Facility 3

Facility name (optional)

Country/Area & River basin
India
Ganges - Brahmaputra

Latitude
28.4

Longitude
77.06

Located in area with water stress
Yes

Total water withdrawals at this facility (megaliters/year)

11,160

Comparison of total withdrawals with previous reporting year

Lower

- **Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes**
 - 0

- **Withdrawals from brackish surface water/seawater**
 - 0

- **Withdrawals from groundwater - renewable**
 - 0

- **Withdrawals from groundwater - non-renewable**
 - 0

- **Withdrawals from produced/entrained water**
 - 0

- **Withdrawals from third party sources**
 - 11,160

Total water discharges at this facility (megaliters/year)

7,809

Comparison of total discharges with previous reporting year

Lower

- **Discharges to fresh surface water**
 - 0

- **Discharges to brackish surface water/seawater**
 - 0

- **Discharges to groundwater**
 - 0

- **Discharges to third party destinations**
 - 7,809

Total water consumption at this facility (megaliters/year)

3,351

Comparison of total consumption with previous reporting year

Lower

Please explain
Besides the implementation of water-use efficiency measures at this facility, a decrease in production due to the COVID-19 pandemic resulted in a decrease in the level of water withdrawals, discharge and consumption compared to the previous reporting year.

Facility reference number
Facility 4

Facility name (optional)

Country/Area & River basin
South Africa
Other, please specify
Algoa

Latitude
33.9

Longitude
25.6

Located in area with water stress
Yes

Total water withdrawals at this facility (megaliters/year)
47,043

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
47,043
Total water discharges at this facility (megaliters/year)
17,614

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
17,614

Total water consumption at this facility (megaliters/year)
29,429

Comparison of total consumption with previous reporting year
Lower

Please explain
Besides the implementation of water-use efficiency measures at this facility, a decrease in production due to the COVID-19 pandemic resulted in a decrease in the level of water withdrawals, discharge and consumption compared to the previous reporting year.

Facility reference number
Facility 5

Facility name (optional)

Country/Area & River basin
China
Yongding He

Latitude
39.1

Longitude
117.1

Located in area with water stress
Yes

Total water withdrawals at this facility (megaliters/year)
Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
166,043

Total water discharges at this facility (megaliters/year)
93,485

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
93,485

Total water consumption at this facility (megaliters/year)
72,558

Comparison of total consumption with previous reporting year
Lower

Please explain
Besides the implementation of water-use efficiency measures at this facility, a decrease in production due to the COVID-19 pandemic resulted in a decrease in the level of water withdrawals, discharge and consumption compared to the previous reporting year.

Facility reference number
Facility 6

Facility name (optional)

Country/Area & River basin
China
Huang He (Yellow River)

Latitude
36.6

Longitude
116.9

Located in area with water stress
Yes

Total water withdrawals at this facility (megaliters/year)
15,549

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
15,549

Total water discharges at this facility (megaliters/year)
6,479

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
6,479

Total water consumption at this facility (megaliters/year)
9,070

Comparison of total consumption with previous reporting year
Higher

Please explain
Besides the implementation of water-use efficiency measures at this facility and the COVID-19 pandemic, an increased production resulted in an increase in the level of water withdrawals and consumption compared to the previous reporting year.

W5.1a

(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified?

<table>
<thead>
<tr>
<th>Water withdrawals – total volumes</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Water withdrawals – volume by source</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Water withdrawals – quality</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Water discharges – total volumes</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
</table>
W6. Governance

W6.1

(W6.1) Does your organization have a water policy?

Yes, we have a documented water policy, but it is not publicly available

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Company-wide</td>
<td>Description of water-related performance standards for direct operations</td>
<td>While we are currently discussing changes to our existing water policy and strategy, at present our...</td>
</tr>
</tbody>
</table>
Company water targets and goals
Commitment to align with public policy initiatives, such as the SDGs
Recognition of environmental linkages, for example, due to climate change
Policy focuses on our impacts and targets at the facility-level (direct operations) only.

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization?
Yes

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Our environmental strategy is reviewed by the Executive Board as a whole on a regular basis in order to ensure consistency with other corporate policies and provide strategic vision. Our CEO in particular is responsible for matters related to Quality and Environment and thereby has direct responsibility for any strategic priorities related to our water strategy.</td>
</tr>
<tr>
<td>Other, please specify</td>
<td>The Sustainability Committee regularly reviews any sustainability relevant topics and acts as the decision board for strategic developments, within which water-related topics are included. The Sustainability Committee is led by the HR Board Member, our CEO and our CFO.</td>
</tr>
</tbody>
</table>

W6.2b

(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| Scheduled - some meetings | Monitoring implementation and performance
Overseeing major capital expenditures | Influence is exercised by the Executive Board and Sustainability committee with respect to strategic vision, integration with other sustainability topics and Group-wide coordination of monitoring and efficiency efforts. This includes special attention |
Reviewing and guiding risk management policies
Reviewing and guiding strategy
Reviewing and guiding corporate responsibility strategy
Reviewing innovation/R&D priorities
Setting performance objectives

from our CEO who is responsible for matters related to Quality and Environment and therefore provides strategic input into the development of our water policy based on current activities and projected environmental risks (i.e. water risks). All information related to current water performance indicators, monitoring issues, water-related risks and supply chain management are provide and prepared by Continental’s Head of Group Environment who briefs higher management on these matters. Periodic meetings with the highest level of management ensure that water issues remain present in financial decision making. At the same time, it ensures that the mitigation of water-related risks are sufficiently coordinated with other related environmental policies.

W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)
Other C-Suite Officer, please specify
Board Member of HR & Sustainability and CFO

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
Quarterly

Please explain
Our Board Member for HR & Sustainability as well our CFO, both of whom also occupy the Executive Board, lead the Sustainability Committee. This committee regularly reviews all sustainability-relevant topics and acts as the decision board for strategy implementation, which includes all water-related topics. Quarterly reports are delivered to the Executive Board as a whole and with special attention given to the CEO outlining progress with respect to the implementation of strategy as well as recommendations for future policy changes or other strategic decisions.

Name of the position(s) and/or committee(s)
Environment/Sustainability manager
Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
Quarterly

Please explain
At the Business Area level, the Heads of Environment work on water-related topics, strategy, risk assessments, target setting and performance. Any information provided by this management level is provided to the Board level to support decision making.

Name of the position(s) and/or committee(s)
Environmental health and safety manager

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
At the plant level, the EHS Manager(s) are responsible for executing and monitoring the performance of water targets. This is done in collaboration with the plant management and the facility management.

Name of the position(s) and/or committee(s)
Facilities manager

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
At the plant level, the EHS Manager(s) are responsible for executing and monitoring the performance of water targets. This is done in collaboration with the plant management and the facility management.

Name of the position(s) and/or committee(s)
Process operation manager

Responsibility
Both assessing and managing water-related risks and opportunities
Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
At the plant level, the EHS Manager(s) are responsible for executing and monitoring the performance of water targets. This is done in collaboration with the plant management and the facility management.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 No, and we do not plan to introduce them in the next two years</td>
<td></td>
</tr>
</tbody>
</table>

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?
Yes, direct engagement with policy makers
Yes, trade associations
Yes, other

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?
There is a regular alignment process in place that corresponds to the quarterly Executive Board meetings and decision-making timeline within the Sustainability Committee to ensure that policy implementation within the facility locations and divisional functions are in accordance with overall water policies. This alignment is coordinated by Heads of Environment and EHS Managers in order to ensure that prioritized water programs and policies are carried out by Facility Managers, and that learnings are fed back to higher management and the Executive Board.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?
Yes (you may attach the report - this is optional)
continental-annual-report-2020-data.pdf
W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Long-term business objectives</th>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes, water-related issues are integrated</td>
<td>16-20</td>
<td>We monitor both current and long-run projections of water risk indicators critical to our operations for both direct operations and critical supply chain basins on an annual basis using the WRI Aqueduct tool and WWF Water Risk Filter. Water risk indicators considered important to our long-term business objectives and strategic planning include changes in water stress, demand, supply and temporal variability in such supplies. A time horizon of 16-20 years was selected to anticipate changes to key water indicators with enough lead time to consider changes to our procurement strategy for key raw materials and ensure resilience - for example natural rubber plantations require 6-10 years after planting to deliver commodities - as well as to integrate findings into our 2030 sustainability strategy currently under development.</td>
</tr>
</tbody>
</table>

| Strategy for achieving long-term objectives | Are water-related issues are integrated | 16-20 | We monitor both current and long-run projections of water risk indicators critical to our operations for both direct operations and critical supply chain basins on an annual basis using the WRI Aqueduct tool and WWF Water Risk Filter. Water risk indicators considered important to our long-term business objectives and strategic planning include changes in water stress, demand, supply and temporal variability in such supplies. A time horizon of 16-20 years was selected to anticipate changes to key water indicators with enough lead time to consider changes to our procurement strategy for key raw materials and ensure resilience - for example natural rubber plantations require 6-10 years after planting to deliver commodities - as well as to integrate findings into our 2030 sustainability strategy currently under development. |
rubber plantations require 6-10 years after planting to deliver commodities - as well as to integrate findings into our 2030 sustainability strategy currently under development.

Financial planning

No, water-related issues were reviewed but not considered as strategically relevant/significant

16-20

Current and long-term water risk indicators were reviewed as they were for long-term business objectives and strategic planning, however the findings were not determined to be immediately critical from a financial planning point of view. This may change in the future as we develop our water strategy further.

W7.2

(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

Water-related CAPEX (+/- % change)	1
Anticipated forward trend for CAPEX (+/- % change)	1
Water-related OPEX (+/- % change)	1
Anticipated forward trend for OPEX (+/- % change)	1

Please explain

Due to the worldwide Covid-19 pandemic investments had to be reduced in 2020. Besides difficulties in predicting future changes in CAPEX/OPEX, we expect these expenditures to remain roughly stable on a pre-pandemic level in next year.

1 = Detailed CAPEX and OPEX figures are considered confidential

W7.3

(W7.3) Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related</th>
<th>Comment</th>
</tr>
</thead>
</table>

W7.3a

(W7.3a) Has your organization identified any water-related outcomes from your climate-related scenario analysis?

Yes

W7.3b

(W7.3b) What water-related outcomes were identified from the use of climate-related scenario analysis, and what was your organization's response?

<table>
<thead>
<tr>
<th>Row</th>
<th>Climate-related scenarios and models applied</th>
<th>Description of possible water-related outcomes</th>
<th>Company response to possible water-related outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Other, please specify RCP 4.5 and RCP 8.5</td>
<td>The RCP 4.5 and RCP 8.5 climate scenarios were used by the WRI Aqueduct Tool as optimistic and business as usual climate scenarios respectively to model changes in water stress and supply over long time horizons (i.e. 2020, 2030 and 2040). These models were used in combination with other indicators to determine where water stress and supply are projected to worsen due to supply side (climate change-related) reasons. We were able to determine that even using the optimistic RCP 4.5 model we will likely see a worsening of water stress due to climate change in several of the high-risk basins where we have direct operations or source raw materials, such as in Mexico.</td>
<td>We anticipate engaging in identified high-risk basins in a more systematic manner moving forward, as indicated by our early efforts to engage with our supply chains in Mexico, due to immediate and long-term water scarcity concerns. This is anticipated to be clarified as part of our 2030 sustainability strategy and implemented over the decade.</td>
</tr>
</tbody>
</table>

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

No, but we are currently exploring water valuation practices

Please explain

Although we are not currently using an internal price on water, we are currently discussing possible options for implementing one at select sites, for example those located within basins that are highly water stressed in anticipation of future water price increases, as part of our 2030 sustainability strategy.

W8. Targets

W8.1

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
</table>
| Company-wide targets and goals | Targets are monitored at the corporate level | Continental has two corporate targets:
- to reduce total water withdrawals per revenue by 2% annually in regions with low and medium water stress
- to reduce total water withdrawals per revenue by 4% annually in regions with high water stress.
The corporate targets have been communicated to the individual production sites, which then must configure their own individual water withdrawal reduction targets and measures based on local circumstances in coordination with the corporate office to ensure that the overall corporate target is achieved by all sites on average. Production sites are responsible for implementing their own water management plans to comply with their individual and corporate-level ambitions by, for example, continually optimising water use on-site or increasing the use of recycled water. |

W8.1a

(W8.1a) Provide details of your water targets that are monitored at the corporate level, and the progress made.

Target reference number
Target 1

Category of target
 Water withdrawals

Level
 Company-wide

Primary motivation
 Reduced environmental impact

Description of target
 The corporate-level target seeks to reduce total water withdrawals per revenue by 2% annually in regions with low and medium water stress.

Quantitative metric
 % reduction per revenue

Baseline year
 2019

Start year
 2019

Target year
 2030

% of target achieved
 0

Please explain
 This target was newly implemented in 2019. Due to the strong decline in production and in sales - caused by the COVID-19 pandemic - the figures of the reporting year 2020 are just slightly comparable to the figures of 2019.

Target reference number
 Target 2

Category of target
 Water withdrawals

Level
 Company-wide

Primary motivation
 Reduced environmental impact

Description of target
The corporate-level target seeks to reduce total water withdrawals per revenue by 4% annually in regions with high water stress.

Quantitative metric
- % reduction per revenue

Baseline year
- 2019

Start year
- 2019

Target year
- 2030

% of target achieved
- 13

Please explain

This target was newly implemented in 2019. Due to the strong decline in production and in sales - caused by the COVID-19 pandemic - the figures of the reporting year 2020 are just slightly comparable to the figures of 2019.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

No, but we are actively considering verifying within the next two years

W10. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.

W10.1

(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate’s Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].

Yes

SW. Supply chain module

SW0.1

(SW0.1) What is your organization’s annual revenue for the reporting period?

<table>
<thead>
<tr>
<th>Annual revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>37,700,000,000</td>
</tr>
</tbody>
</table>

SW0.2

(SW0.2) Do you have an ISIN for your organization that you are willing to share with CDP?

Yes

SW0.2a

(SW0.2a) Please share your ISIN in the table below.

<table>
<thead>
<tr>
<th>ISIN country code</th>
<th>ISIN numeric identifier (including single check digit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>00054390</td>
</tr>
</tbody>
</table>

SW1.1

(SW1.1) Could any of your facilities reported in W5.1 have an impact on a requesting CDP supply chain member?

This is confidential

SW1.2

(SW1.2) Are you able to provide geolocation data for your facilities?

<table>
<thead>
<tr>
<th>Are you able to provide geolocation data for your facilities?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, this is confidential data</td>
<td></td>
</tr>
</tbody>
</table>
SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?

No

SW3.1

(SW3.1) Provide any available water intensity values for your organization’s products or services.

Submit your response

In which language are you submitting your response?

English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>I am submitting to</th>
<th>Public or Non-Public Submission</th>
<th>Are you ready to submit the additional Supply Chain questions?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am submitting my response</td>
<td>Investors Customers</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please confirm below

I have read and accept the applicable Terms