

EVOLUTION OF BRAKE CONTROLS TO MOTION SYSTEMS

Evolution Steps of the Vehicle Architecture

Trends driving Braking Controls to Motion Systems

Future Brake System

Evolution Steps

FBS 0 2016 - 2022

- Simulator brake system
- Vacuum-less for EVs
- Highest regen efficiency
- Supports SAE Level 2
- SAE Level ≥3 w/ add-on

FBS 1.x

2025 - 2026

- Enabler for rolling chassis
- SAE Level ≥3
- Optional: redundant one-box design

FBS 2.0

2025 - 2028

- Vehicle assembly simplified for rear axle
- Keeps proven hydraulic fallback

FBS 3.0

2027 - 2030

- Dry brake-by-wire on all corners
- Vehicle assembly simplified
- · Brake service simplified

distributed E/E Architecture server-based

hydraulic brake Brake System Architecture dry brake

EBS legacy Functional Architecture central motion control

Hardware

Software

Portability

Distribution

Evolution from Braking to Motion Controls

On the path to autonomous driving

Sensors Fusion

Object Detection

Situation Interpretation

Prediction/ Trajectory Planning **Kinematic Motion Control**

Dynamic Motion Control

Actuator Control

Signal syncronization Object classification

Scene prediction High-level planning

Motion request definition

Motion request control

Execution of actuator requests

Future Brake **System**

Future Wheel Brake Solutions

FBS₀ 2016 - 2022

FBS 1.x 2025 - 2026

FBS 2.0 2025 - 2028

FBS 3.0 2027 - 2030

Vehicle Efficiency

- CO2 Emissions
- Lower Particles **Emissions**

BEVs Brake Future Requirements

New Vehicle Architecture with Electromechanical **Brake Actuation**

Vehicle **Efficiency**

Reduced CO2 **Emissions**

Lower Friction Losses

Caliper

Drum **Brake**

- 80% Drag Torque reduction by active brake pad retraction
- Up to 0,5 kg weight reduction/caliper
- Low drag torque solution → EPB-Si in production on **VW ID.3 & ID.4**
- Lightweight Drum solution

Lower Particles Emission

Reduce Dust Generated Through **Braking**

- Hard coated disc and new pad material supported
- Encapsulated drum → EPB-Si in production on VW ID.3 & ID.4
- Optimized encapsulation

BEVs Brake Future Requirements

Lower usage of Friction Brakes due to recuperation

Right sizing of wheel brakes

Caliper Drum

- Adaptation of caliper sizes with higher rotor diameters and scalability from 14" to 20"
- Reduction on pad thickness
- Right sized Drum Brake → EPB-Si in VW ID.3 & ID.4
- Reduction of lining thickness

Corrosion of brake disc due to low usage

Optimization of friction couple

Hard coated disc and new pad material supported

Encapsulated drum as protection against outer influences (water, salt, etc.) → EPB-Si on VW ID.3 & ID.4

Brake

TechShow Around the World August 19, 2021 Amit Kapoor & Jean-Michel Verdier © Continental AG

New Vehicle Architecture

Brake Solutions

Wheel

Evolution of Brake Controls to Motion Systems

Modular and scalable setup to serve market needs

TechShow

Continental is ready for new Brake System and Motion Control Architecture

